Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT G 29 − 38 (TIC 422526868) is one of the brightest (V = 13.1) and closest (d = 17.51 pc) pulsating white dwarfs with a hydrogen-rich atmosphere (DAV/ZZ Ceti class). It was observed by the TESS spacecraft in sectors 42 and 56. The atmosphere of G 29 − 38 is polluted by heavy elements that are expected to sink out of visible layers on short time-scales. The photometric TESS data set spans ∼51 d in total, and from this, we identified 56 significant pulsation frequencies, that include rotational frequency multiplets. In addition, we identified 30 combination frequencies in each sector. The oscillation frequencies that we found are associated with g-mode pulsations, with periods spanning from ∼ 260 to ∼ 1400 s. We identified rotational frequency triplets with a mean separation δνℓ = 1 of 4.67 μHz and a quintuplet with a mean separation δνℓ = 2 of 6.67 μHz, from which we estimated a rotation period of about 1.35 ± 0.1 d. We determined a constant period spacing of 41.20 s for ℓ = 1 modes and 22.58 s for ℓ = 2 modes. We performed period-to-period fit analyses and found an asteroseismological model with M⋆/M⊙ = 0.632 ± 0.03, $$T_{\rm eff}=11\, 635\pm 178$$ K, and log g = 8.048 ± 0.005 (with a hydrogen envelope mass of MH ∼ 5.6 × 10−5M⋆), in good agreement with the values derived from spectroscopy. We obtained an asteroseismic distance of 17.54 pc, which is in excellent agreement with that provided by Gaia (17.51 pc).more » « less
-
Abstract We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). The newauto_diffmodule implements automatic differentiation inMESA, an enabling capability that alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the treatment of the growth and decay of convection inMESAwith a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We strengthenMESA’s implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars inMESA, we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator-split nuclear burning mode. We close by discussing major updates toMESA’s software infrastructure that enhance source code development and community engagement.more » « less
An official website of the United States government
